Quantification of Impact of Orbital Drift on Inter-Annual Trends in AVHRR NDVI Data

نویسندگان

  • Jyoteshwar R. Nagol
  • Eric F. Vermote
  • Stephen D. Prince
چکیده

The Normalized Difference Vegetation Index (NDVI) time-series data derived from Advanced Very High Resolution Radiometer (AVHRR) have been extensively used for studying inter-annual dynamics of global and regional vegetation. However, there can be significant uncertainties in the data due to incomplete atmospheric correction and orbital drift of the satellites through their active life. Access to location specific quantification of uncertainty is crucial for appropriate evaluation of the trends and anomalies. This paper provides per pixel quantification of orbital drift related spurious trends in Long Term Data Record (LTDR) AVHRR NDVI data product. The magnitude and direction of the spurious trends was estimated by direct comparison with data from MODerate resolution Imaging Spectrometer (MODIS) Aqua instrument, which has stable inter-annual sun-sensor geometry. The maps show presence of both positive as well as negative spurious trends in the data. After application of the BRDF correction, an overall decrease in positive trends and an increase in number of pixels with negative spurious trends were observed. The mean global spurious inter-annual NDVI trend before and after BRDF correction was 0.0016 and −0.0017 respectively. The research presented in this paper gives valuable insight into the magnitude of orbital drift related trends in the AVHRR NDVI data as well as the degree to which it is being rectified by the MODIS BRDF correction algorithm used by the LTDR processing stream. OPEN ACCESS Remote Sens. 2014, 6 6681

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOAA AVHRR NDVI/MODIS NDVI Predicts Potential to Forest Resource Management in Çatalca District of Turkey

Çatalca, located on the ridge between the Marmara and the Black Sea, is a rural district of Istanbul having the temperate climate. Landuse involves farming and forestry. This study makes a contribution and revises the applicability of two medium spatial resolution satellite sensors, NOAA AVHRR NDVI and MODIS (Terra) NDVI, for prediction to potential forest resource management in Çatalca distric...

متن کامل

Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data

This paper assesses the effect of changes in solar zenith angle (SZA) and sensor changes on reflectances in channel 1, channel 2, and normalized difference vegetation index (NDVI) from the advanced very high resolution radiometer (AVHRR) Pathfinder land data set for the period July 1981 through September 1994. First, the effect of changes in SZA on channel reflectances and NDVI is derived from ...

متن کامل

Using temporal averaging to decouple annual and nonannual information in AVHRR NDVI time series

As regularly spaced time series imagery becomes more prevalent in the remote sensing community, monitoring these data for temporal consistency will become an increasingly important problem. Long-term trends must be identified, and it must be determined if such trends correspond to true changes in reflectance characteristics of the study area (natural), or if their source is a signal collection ...

متن کامل

Analysis of 1982-2006 Sudano-sahelian Vegetation Dynamics Using Noaa-avhrr Ndvi Data and Normalized Rain-use Efficiency

Land cover dynamic has to be taken into account to analyze changes in water resources, especially in vulnerable environment such as the Bani catchment in Mali. To study the land cover changes, we used NDVI AVHRR time series (1982-2006, 8 km spatial resolution), and monthly rainfall data from 65 stations. To interpret the NDVI trends in terms of land cover changes, we had to eliminate the inter-...

متن کامل

Comparing Optical and Microwave Remote Sensing-based Vegetation Density over Mongolia for 1988-2006

Vegetation density plays an important role in water and energy balance. Satellite-based optical and microwave sensors are expected to provide complementary vegetation information. Here we compared NDVI from AVHRR and vegetation optical depth (VOD) from SSM/I over Mongolia from 1988 through 2006. Both products show similar spatial distribution in annual average and are able to capture similar in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014